On the Well-Posedness for the Viscous Shallow Water Equations

نویسندگان

  • Qionglei Chen
  • Changxing Miao
  • Zhifei Zhang
چکیده

In this paper, we prove the existence and uniqueness of the solutions for the 2D viscous shallow water equations with low regularity assumptions on the initial data as well as the initial height bounded away from zero.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well-posedness for the viscous shallow water equations in critical spaces

We investigate the well-posedness for the 2D viscous shallow water equations in the theory of compressible fluid. Making use of the Fourier frequency localization and Bony paraproduct decomposition, closing to a stable equilibrium h0, we obtain the local well-posedness for general initial data u0 and the global well-posedness for small initial data u0 in certain scaling invariant Besov spaces, ...

متن کامل

New Developments and Cosine Effect in the Viscous

The viscous shallow water equations and quasi-geostrophic equations are considered in this paper. Some new terms, related to the Coriolis force, are revealed thanks to a rigorous asymptotic analysis. After providing well-posedness arguments for the new models, the authors perform some numerical computations that confirm the role played by the cosine effect in various physical configurations.

متن کامل

Mathematical derivation of viscous shallow-water equations with zero surface tension

The purpose of this paper is to derive rigorously the so called viscous shallow water equations given for instance page 958-959 in [A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys, 69 (1997), 931–980]. Such a system of equations is similar to compressible Navier-Stokes equations for a barotropic fluid with a non-constant viscosity. To do that, we consider a layer of incompressible and Newtoni...

متن کامل

Cauchy problem for viscous shallow water equations with a term of capillarity

In this article, we consider the compressible Navier-Stokes equation with density dependent viscosity coefficients and a term of capillarity introduced formally by Van der Waals in [44]. This model includes at the same time the barotropic Navier-Stokes equations with variable viscosity coefficients, shallow-water system and the model introduced by Rohde in [39]. We first study the well-posednes...

متن کامل

New Developments and Cosine Effect in the Viscous Shallow Water and Quasi-geostrophic Equations

The viscous Shallow Water Equations and Quasi-Geostrophic Equations are considered in this paper. Some new terms, related to the Coriolis force, are revealed thanks to a rigorous asymptotic analysis. After providing well-posedness arguments for the new models, the authors perform some numerical computations that confirm the role played by the cosine effect in various physical configurations. Ke...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2008